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Abstract—The well-known gap between relative CPU speeds
and storage bandwidth results in the need for new strategies for
managing I/O demands. In large-scale MPI applications, collec-
tive I/O has long been an effective way to achieve higher I/O rates,
but it poses two constraints. First, although overlapping collective
I/O and computation represents the next logical step toward a
faster time to solution, MPI’s existing collective I/O API provides
only limited support for doing so. Second, collective routines
(both for I/O and communication) impose a synchronization cost
in addition to a communication cost. The upcoming MPI 3.1
standard will provide a new set of nonblocking collective I/O
operations to satisfy the need of applications. We present here
initial work on the implementation of MPI nonblocking collective
I/O operations in the MPICH MPI library. Our implementation
begins with the extended two-phase algorithm used in ROMIO’s
collective I/O implementation. We then utilize a state machine
and the extended generalized request interface to maintain the
progress of nonblocking collective I/O operations. The evaluation
results indicate that our implementation performs as well as
blocking collective I/O in terms of I/O bandwidth and is capable
of overlapping I/O and other operations. We believe that our
implementation can help users try nonblocking collective I/O
operations in their applications.

I. INTRODUCTION

As many HPC applications deal with larger datasets, file
I/O becomes more important because of its relatively slow
performance. If the application requests a lot of file I/O
operations, I/O time can be the main bottleneck in the applica-
tion’s performance. In order to alleviate the I/O performance
issue, many parallel file systems and parallel I/O libraries
have been introduced and widely used. The Message Passing
Interface (MPI) I/O, which has been included in the MPI
standard since MPI 2.0 [1], is one of these efforts that support
parallel I/O operations. Moreover, many I/O optimizations—
for example, nonblocking individual I/O and collective I/O—
have been proposed to improve the I/O performance and to
help applications developers optimize their I/O use cases.

Nonblocking operations for communication and I/O have
gained much attention because they provide optimization
opportunities for overlapping communication (or I/O) and
computation [2]. While blocking operations do not return to
the caller until they are completed, nonblocking ones initiate
the operation and return immediately to the caller. After the
initiation, the nonblocking operations, if possible, make their
progress in the background and let the user code check the
completion of the operations. If the user code can execute
useful computation between the initiation and the completion

of nonblocking operation, it can reduce the whole execution
time by the overlapped time. Therefore, for many high-
performance computing (HPC) applications that rely on heavy
communication or I/O, exploiting the nonblocking operations
can be critical for improving performance by hiding the
communication or I/O cost.

Among various nonblocking operations, nonblocking col-
lective (NBC) I/O operations are attractive because they can
take advantage of both nonblocking operations and collective
operations. Applications using NBC I/O not only can overlap
I/O and computation but also can leverage the optimized
implementation of collective operations. Since collective I/O
operations can exploit more information about I/O access
patterns, they can provide the optimized performance com-
pared with individual I/O operations. For example, with more
information about file accesses, the performance can be im-
proved by merging I/O requests of participating processes
[3]. Collective operations do impose one cost: a “pseudo-
synchronization” cost when early arrivals to a collective call
have a data dependency on later arrivals and must wait until
the laggards provide the required data [4], [5]. Nonblocking
collectives allow programs to possibly hide or absorb this
pseudo-synchronization cost.

The MPI standard has supported nonblocking operations
for I/O and communication as immediate versions of blocking
operations. The recent MPI 3.0 standard [6] provides immedi-
ate versions of all point-to-point communication and all col-
lective communication operations. It also supports nonblocking
versions for individual file I/O operations and a restricted form
of NBC file I/O operations, called split collective I/O. Since
the split collective I/O operations have some limitations (see
Section II-A), however, the MPI Forum has sought to include
one missing part–general NBC I/O operations—in the MPI
standard. The upcoming MPI 3.1 standard will contain a new
set of such routines.

This paper presents our initial work on the implementation
of the MPI NBC I/O operations proposed for the upcoming
MPI 3.1 standard and shows preliminary evaluation results.
Our implementation is based on ROMIO’s collective I/O algo-
rithm [3]. It essentially replaces all blocking operations used
in ROMIO’s collective I/O implementation with nonblocking
counterparts and uses the MPI test routines to keep track of
progress or to make progress on each nonblocking operation.
We use extended generalized requests [7] in order to manage
the progress of NBC I/O operations. During the implemen-
tation, the original collective I/O routine is split into several
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Fig. 1: Posting multiple collective file read operations.

code segments (i.e., different small routines) whenever any
nonblocking operation is initiated. Further, the nonblocking
operation issued is tested in the state machine.

The major contributions of this paper are the following.

• We review MPI NBC I/O operations and discuss their
implications for applications.

• We describe a state machine–based implementation of
MPI NBC I/O operations in ROMIO using the extended
generalized request.

• We show the effectiveness of our implementation of MPI
NBC I/O operations using benchmarks.

The rest of the paper is organized as follows. In Section II
we review the limited NBC I/O features currently in MPI,
and we discuss the NBC I/O operations recently added to the
MPI 3.1 standard. Readers interested in our implementation of
MPI NBC I/O routines will find in Section III a discussion of
our state machine design and our use of extended generalized
requests. In Section IV we evaluate our implementation on a
Linux cluster. Section V summarizes related work. Section VI
concludes the paper and presents our future work.

II. NONBLOCKING COLLECTIVE I/O OPERATIONS

In this section, we briefly review the current nonblocking
collective I/O routines for MPI, called split collective routines,
and introduce a new set of general NBC I/O routines for the
upcoming MPI 3.1 standard. We then discuss the implications
of NBC I/O operations for applications.

A. Split Collective I/O

The current MPI standard provides I/O routines to sup-
port NBC I/O operations [6]. Since these routines divide
a single collective operation into two parts, a begin rou-
tine and an end routine, they are referred to as split
collective operations. For example, the split collective I/O
routines that are equivalent to MPI_File_read_all are
MPI_File_read_all_begin and MPI_File_read_all_end.

Here, MPI_File_read_all_begin begins the collective read
operation, and MPI_File_read_all_end completes the oper-
ation.

Although split collective I/O routines provide the seman-
tics of NBC I/O operations, they have some limitations that
reduce their use in applications. First, at most one active split
collective operation is possible on each file handle at any
time. That is, a process is not allowed to begin another split
collective I/O operation on a file handle before the preceding
one is completed. As shown in Figure 1(a), it has to wait for
the completion of the split collective operation posted before
issuing another one.

Second, split collective I/O routines do not use the
MPI_Request handle. This limitation sometimes hinders im-
plementers from providing efficient implementations of non-
blocking operations. Since collective I/O algorithms may re-
quire more than two steps to complete a collective operation,
making progress with only begin/end routines may be difficult.
For example, ROMIO, a widely used MPI I/O implementation,
does not provide a true immediate return implementation
for split collective I/O routines [3]. It currently implements
split collectives by performing all I/O in the “begin” step
of the routines. ROMIO performs only a small amount of
bookkeeping in the “end” step. Therefore, applications using
ROMIO cannot overlap computation and I/O operations with
these split collective I/O routines and cannot benefit from less
restrictive synchronization.

B. Proposal for MPI 3.1 Standard

To overcome the limitations of split collective routines,
the MPI Forum proposed a set of general NBC I/O routines
[8]. The upcoming MPI 3.1 standard will include immediate
nonblocking versions of collective I/O operations for explicit
offsets and individual file pointers, and the new versions will
replace the current split collective routines [9]. Specifically,
the following four routines will be added.

MPI_File_iread_all(..., MPI_Request *req)
MPI_File_iwrite_all(..., MPI_Request *req)
MPI_File_iread_at_all(..., MPI_Request *req)
MPI_File_iwrite_at_all(..., MPI_Request *req)

The NBC I/O routines have the same interface as
their blocking counterpart except that the last parameter is
MPI_Request instead of MPI_Status. These routines initiate
a collective read or write operation and return a request handle.
The returned request handle can be tested or waited on for
completion with MPI_Test or MPI_Wait, respectively, or any
of their variants. Unlike split collective I/O operations, multiple
NBC I/O operations can be posted on a single file handle
without waiting for the completion of preceding operations.
For an NBC I/O routine for individual file pointer (i.e.,
MPI_File_iread_all or MPI_File_iwrite_all), the file
pointer is advanced appropriately when the routine returns, so
that the following I/O operations on the file pointer operate on
the right offset.

C. Implications for Applications

With the proposed NBC I/O operations, applications can
take advantage of benefits of both collective I/O operations and
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Fig. 2: Example of collective write operation in ROMIO.

nonblocking operations. Basically, NBC I/O operations can
deliver optimized performance just as blocking I/O operations
can because they take the same parameter information as their
blocking counterpart. A high-quality implementation of NBC
I/O operations can give applications I/O performance similar to
that with corresponding blocking I/O operations. Applications
can also benefit from overlapping I/O operations and other
computation or communication by issuing nonblocking oper-
ations.

In addition, new NBC I/O operations enable different col-
lective I/O operations to be overlapped. For instance, users can
post multiple NBC I/O operations on a single file handle and
wait for the completion of all operations using MPI_Waitall,
as shown in Figure 1(b). Note that split collective I/O opera-
tions do not allow the posting of more than one operation on
a single file handle at a time (Figure 1(a)).

III. IMPLEMENTATION OF NBC I/O OPERATIONS

This section describes our implementation of NBC I/O
operations. Specifically, we implement the four NBC I/O
routines introduced in Section II-B inside ROMIO [3].

A. Collective I/O in ROMIO

Collective I/O operations in ROMIO were implemented
by using a generalized version of the extended two-phase
method presented in [10], [3], so that any noncontiguous I/O
requests can be handled. Here we briefly summarize that two-
phase method, in order to give background for our NBC I/O
implementation.

The two-phase I/O method basically splits a collective I/O
operation into two phases. For example, in the first phase for
the write operation, each process sends its noncontiguous data,

from the point of view of file, to other processes in order for
each process to rearrange the data for a large contiguous region
in a file. Then, each process writes a big contiguous region
of a file with collected data instead of accessing many small
noncontiguous regions. This two-phase method can combine a
large number of noncontiguous requests into a small number of
contiguous I/O operations and thus can improve performance
significantly. This is possible because collective I/O interfaces
provide the MPI I/O implementation with information about
I/O requests of all processes. For the read operation, processes
read data from a file first and then communicate with each
other to distribute data to processes in order to satisfy the
original read request.

Figure 2 shows an example of collective write operations
handled in ROMIO. In the figure, three processes (P0, P1,
and P2) request to write three blocks from their memory to
noncontiguous regions in a file. P0 requests to write the data
block A to the file block 1, B to 4, and C to 7. Similarly, P1
requests to write D to 2, E to 5, and F to 8. P2 also requests
the same pattern of write operations. If we handle requests
of all processes independently, each process may need three
individual write operations because file offsets for the write
operation are not contiguous. For example, P0 may have to
access three file offsets (1, 4, and 7) to write three data blocks
(A, B, and C).

Since this is a collective write request, however, ROMIO
can optimize the requests of all processes by exploiting the
information about file offsets and data distribution among pro-
cesses. First, all processes exchange their request information
(e.g., offsets, lengths) and determine which blocks can make
contiguous regions in a file. Then, each process distributes its
own blocks to other processes so that each process can have
contiguous data to write to a file. In Figure 2, P0 sends block



B and C to P1 and P2, respectively, and receives block D and
G from P1 and P2, respectively. P1 and P2 also, similarly to
P0, communicate data blocks with other processes. After this
communication phase, in their buffer P0 has A, D, and G; P1
has B, E, and H; and P2 has C, F, and I, respectively. All
processes then can write their buffer to a contiguous region
in the file with a single operation. For example, P0 writes its
buffer consisting of A, D, and G to the contiguous region, from
1 to 3, in the file.

B. State Machine-Based Implementation

Our implementation of NBC I/O operations uses the same
general algorithm as the blocking collective I/O operations
in ROMIO, but we replace all blocking communication or
I/O operations with nonblocking counterparts and divide the
original routine into two separate routines when the blocking
operation is changed. In addition, we use request handles to
make progress or keep track of progress.

Figure 3 illustrates how we convert original blocking
operations in MPI_File_write_all to nonblocking ones and
split MPI_File_write_all into different routines in order
to implement MPI_File_iwrite_all. First, we define a
struct, struct nbcio_status, that is used internally to keep
track of the status of NBC I/O operation. For example, in
Figure 3(b), struct nbcio_status has a request handle
nio_req for the ongoing NBC I/O operation, a request
handle cur_req for the current nonblocking communication
or I/O operation in progress during the NBC I/O, a state
variable state to record the status of operation, and other
fields. A struct nbcio_status variable is allocated inside
MPI_File_iwrite_all and is deallocated when the request
handle nio_req is released (not shown in Figure 3).

Second, we change all blocking calls (e.g., MPI_Alltoall
and ADIO_WriteStrided) in MPI_File_write_all
of Figure 3(a) to nonblocking counterpart calls (e.g.,
MPI_Ialltoall and ADIO_IwriteStrided) and use
cur_req of struct nbcio_status to obtain the related
request handle. The cur_req handle is used to check the
progress of MPI_Ialltoall and ADIO_IwriteStrided in
the state machine code of Figure 4. We also insert code that
saves the current state of NBC I/O operation right after each
nonblocking routine call.

We then split the modified routine into a set of
different routines according to locations where we
put nonblocking routine calls. The result of the code
split is shown in Figure 3(b). The original routine
MPI_File_write_all is divided into three routines:
MPI_File_iwrite_all, iwrite_all_fileop, and
iwrite_all_fini. MPI_File_iwrite_all is an
entry routine that initiates a collective file write
operation. It includes the code from the beginning of
MPI_File_write_all to MPI_Ialltoall. It also contains
code that allocates a struct nbcio_status variable and
creates a generalized request class, gen_class, followed by
allocating a request object using the extended generalized
request interface (MPIX_Grequest_class_create and
MPIX_Grequest_class_allocate) [7]. The request handle
returned to the user can be used to test or wait for the
completion of this collective file write operation.

int MPI_File_write_all(..., MPI_Status *status) {
...
MPI_Alltoall(...);
...
ADIO_WriteStrided(...);
...

}
(a) MPI_File_write_all

struct nbcio_status {
MPI_Request nio_req; /* for this NBC I/O op. */
MPI_Request cur_req; /* current nonblocking op. */
nbcio_state state; /* current state */
... /* other fields */

};

MPIX_Grequest_class greq_class = 0;

int MPI_File_iwrite_all(..., MPI_Request *req) {
...
nio_status = malloc(sizeof(struct nbcio_status));
if (greq_class == 0)

MPIX_Grequest_class_create(..., iwrite_all_poll_fn,
..., &greq_class);

MPIX_Grequest_class_allocate(greq_class, nio_status,
&nio_status->nio_req);

memcpy(req, &nio_status->nio_req, sizeof(MPI_Request));

/* use nonblocking communication */
MPI_Ialltoall(..., &nio_status->cur_req);
nio_status->state = IWRITE_ALL_STATE_COMM;
return error_code;

}

void iwrite_all_fileop(struct nbcio_status *nio_status) {
...
ADIO_IwriteStrided(..., &nio_status->cur_req);
nio_status->state = IWRITE_ALL_STATE_FILEOP;

}

void iwrite_all_fini(struct nbcio_status *nio_status) {
...
nio_status->state = IWRITE_ALL_STATE_COMPLETE;
MPI_Grequest_complete(nio_status->nio_req);

}
(b) MPI_File_iwrite_all

Fig. 3: Example of implementing MPI_File_iwrite_all
from MPI_File_write_all by replacing blocking operations
with nonblocking ones.

The second routine iwrite_all_fileop includes the
code after MPI_Alltoall in Figure 3(a) and ends with
the ADIO_IwriteStrided call. This routine is invoked by
iwrite_all_poll_fn in Figure 4 only when the commu-
nication in the first routine is completed.

The third routine iwrite_all_fini executes
the remaining code and completes the request for
MPI_File_iwrite_all. It is called when the nonblocking
file write operation in iwrite_all_fileop is completed.

We manage the progress of NBC I/O operations by using
a state machine. Since our implementation of an NBC I/O
routine consists of several routines and they must be executed
according to the order of original two-phase algorithm, we
need to keep track of which routine is executing at a certain
point. We solve this issue by maintaining a state machine
for each NBC I/O operation. Figure 4 shows an example
of the state machine that manages the progress of NBC I/O



int iwrite_all_poll_fn(void *extra_state, ...) {
...
int flag = 0;
nio_status = (struct nbcio_status *)extra_state;
switch (nio_status->state) {

case IWRITE_ALL_STATE_COMM:
MPI_Test(&nio_status->cur_req, &flag, status);
if (flag) iwrite_all_fileop(nio_status);
break;

case IWRITE_ALL_STATE_FILEOP:
MPI_Test(&nio_status->cur_req, &flag, status);
if (flag) iwrite_all_fini(nio_status);
break;

case IWRITE_ALL_STATE_COMPLETE:
break;

...
}
...

}

Fig. 4: Example of state machine code for the implementation
of MPI_File_iwrite_all in Figure 3.

operations. In the figure, when the state of the NBC I/O
operation is IWRITE_ALL_STATE_COMM, the request handle
related with this state is tested to check whether the pre-
vious communication is completed. If it is completed, the
next routine, here iwrite_all_fileop, is called. Otherwise,
the state machine code returns to the caller, and the caller
again checks the status of operation. The state machine
terminates when its state reaches the final state, namely,
IWRITE_ALL_STATE_COMPLETE, and the request handle for
the entire NBC I/O operation is marked as completed.

Since ROMIO uses the extended generalized request in-
terface to implement nonblocking independent I/O operations
[7], we also exploit it to implement NBC I/O operations and
to easily integrate new routines into ROMIO. The extended
generalized requests add poll and wait routines to the standard
MPI generalized requests. These routines enable users to uti-
lize the test and wait routines of MPI in order to check progress
on or make progress on user-defined nonblocking operations.
For example, the iwrite_all_poll_fn routine in Figure 4 is
registered when a generalized request class is created (See the
MPI_File_iwrite_all routine in Figure 3(b)) and is called
when the test routine is called with the request handle returned
from the NBC I/O routine. On the other hand, standard
generalized requests are unable to make progress with the test
or wait routines: their progress must occur completely outside
the underlying MPI implementation (typically via pthreads or
signal handlers).

C. Progress of NBC I/O Operations

The MPI standard specifies that all nonblocking calls are
local and return immediately irrespective of the status of other
processes [6]. This will also be the case for NBC I/O routines
in the upcoming MPI 3.1 standard [9]. The NBC I/O routine
initiates the I/O operation and returns a request handle, which
must be passed to a completion call. The implementation of
NBC I/O operations may make progress implicitly or may
require the user’s code to call MPI_Test or MPI_Wait in order
to make explicit progress.

Our current implementation of NBC I/O operations pro-
vides neither asynchronous nor implicit progress. The user has

TABLE I: Target platform

Configuration Blues
Number of nodes 310
Processor Intel Xeon E5-2670
Clock frequency 2.60 GHz
Cores per node 16
HW threads per core 2 (disabled)
Memory per node 64 GB
File system GPFS
Interconnect QLogic QDR infiniband
Topology Fat-tree
OS CentOS 6.6
Compiler GCC 4.4.7

to call the test or wait routines to explicitly make progress of
NBC I/O operations. Although this explicit progress manage-
ment seems to be a burden to users, it is currently a common
practice in implementing nonblocking operations [5], [11]. We
can exploit progress threads in order to support asynchronous
progress for NBC I/O operations, but we leave this task for
future work.

IV. EVALUATION

This section presents the evaluation methodology and
initial evaluation results of our implementation of NBC I/O
operations.

A. Methodology

Target platform. For the evaluation, we use the Blues
cluster at Argonne National Laboratory. Blues consists of 310
compute nodes, and a GPFS file system is shared among
all nodes on the cluster. Each compute node has two Intel
Xeon E5-2670 CPUs and supports 16 cores, but currently
hyperthreading is disabled on all nodes. Table I shows details
about the target platform.

MPI implementation. We implemented the NBC I/O
routines introduced in Section II-B inside ROMIO. Our current
NBC I/O implementation is integrated into MPICH 3.2a2 [12]
as MPIX routines (e.g., MPIX_File_iwrite_all instead of
MPI_File_iwrite_all) because new NBC I/O routines are
not currently included in the MPI standard. We note that
ROMIO is distributed as part of MPICH. Our implementation
(described in Section III) uses the extended generalized request
provided by MPICH.

Benchmarks. To evaluate our NBC I/O implementation,
we use the coll_perf benchmark in the ROMIO test suite
and its modifications in order to use NBC I/O operations or to
overlap collective I/O operations and computation. We also use
a microbenchmark to measure the performance of overlapping
multiple I/O operations.

Using these benchmarks, we compare our NBC I/O rou-
tines with their blocking counterpart routines in terms of
file write and read bandwidth and overlapping with other
operations. Since the implementation of split collective I/O
routines in ROMIO is the same as that of blocking collective
I/O routines, we do not include comparison results with split
collective I/O routines.
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Fig. 5: File write and read bandwidth with 512 and 1,024 processes.

B. I/O Bandwidth

We measure the file I/O bandwidth with the coll_perf
benchmark for blocking collective I/O operations. For NBC
I/O operations, we modify coll_perf by replacing blocking
I/O routines with their corresponding NBC I/O routines fol-
lowed by wait routines. For example, MPI_File_write_all
is converted to a pair of MPI_File_iwrite_all and
MPI_Wait. The coll_perf benchmark measures the I/O
bandwidth for writing and reading a 3D block-distributed array,
which is created by MPI_Type_create_darray, to a file. It
sets the file view with the 3D block-distributed array, and thus
the file access pattern is noncontiguous. We use a 3D block-
distributed array whose global size is 2176 × 1152 × 1408
integers (about 14 GB).

Figure 5 shows results of file I/O bandwidth measurement.
We use 512 and 1,024 processes on Blues with different
processes per node (ppn) settings. Figure 5(a) and Figure 5(b)
illustrate results when ppn is 8 and 16, respectively. Note
that each execution with ppn=8 uses twice as many nodes as
that with ppn=16. In Figure 5, BC I/O and NBC I/O denote
results of blocking collective I/O and nonblocking collective
I/O operations, respectively. Each execution is done six times
for each configuration. Figure 5 shows the average bandwidth
and maximum and minimum bandwidths measured.

The results indicate that our implementation of NBC I/O
operations achieves, on average, bandwidth similar to that
of blocking collective I/O operations. The reason is that our
NBC I/O implementation is based on the same algorithm
of blocking collective I/O in ROMIO, and the benchmark
invokes the wait routine right after issuing an NBC I/O routine.
In other words, the benchmark for NBC I/O does almost
the same amount of work as that for BC I/O. The NBC
I/O routines ideally should have more overhead only from
additional function calls and memory management. The similar
bandwidth results in Figure 5 indicate that our approach is
efficient and does not cause significant overhead compared
with blocking I/O operations. Where the results of NBC I/O
show better bandwidth than those of BC I/O, we believe that
they come from jitter in I/O operations or communication. The
better bandwidth results in Figure 5(a) than those in Figure 5(b)
are because I/O traffic is distributed to more nodes in the case
of ppn=8. Again, we note that the same number of processes

MPI_File_write_all();
Computation();

(a) Blocking I/O with computation

MPI_File_iwrite_all(..., &req);
for (...) {

Small_Computation();
MPI_Test(&req, &flag, ...);
if (flag) break;

}
Remaining_Computation();
MPI_Wait(&req, ...);

(b) NBC I/O with computation

Fig. 6: Executing I/O operation with computation.

with ppn=8 use more nodes than those with ppn=16.

C. Overlapping I/O and Computation

Basically, one cannot overlap blocking I/O and other com-
putation, and thus they should be executed successively as
shown in Figure 6(a). However, computation code can be
added between the NBC I/O routine and the wait routine
in order to overlap I/O and computation. We insert into the
coll_perf benchmark some synthetic computation code like
that in Figure 6(b). We regularly call MPI_Test to explicitly
make progress, as explained in Section III-C. Consequently, the
big computation, Computation(), in Figure 6(a) is divided
into small pieces of computation, Small_Computation()
and Remaining_Computation(), in Figure 6(b). In order to
ensure fair comparison, the amount of both computations is
kept the same. We measure the execution time of each case in
Figure 6.

Figure 7 shows performance results of adding some com-
putation to the coll_perf benchmark. The benchmark uses
the global array size, 1536×1024×1024 integers (6 GB) and
64 processes with ppn=8 for the evaluation. In the figure, BC
I/O and NBC I/O represent the execution times of blocking
collective I/O with computation and NBC I/O with compu-
tation, respectively. We ran each case five times; Figure 7
presents the average execution time. The portion of dark gray
in each bar denotes the execution time of computation; light
gray means the I/O time, which is calculated by subtracting
the computation time from the entire execution time.
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NBC I/O in Figure 7 shows that 84% of the I/O time is
overlapped with computation for the write operation and 83%
for the read operation. Consequently, the entire execution time
of NBC I/O is reduced by 36% for write and 34% for read,
respectively, compared with that of BC I/O. The slight increase
in the computation time of NBC I/O in Figure 7 seems to come
from noises in the measurement or cache effect resulting from
switching between computation code and the test routine. We
note, however, that the workload of computation and I/O is the
same for both BC I/O and NBC I/O.

If the I/O operation is completely overlapped with compu-
tation, the I/O time will be fully hidden by the computation
time. This is not the case for our NBC I/O implementation,
however, mainly because of the explicit progress requirement.
To make progress on the NBC I/O operation, we have to call
the test routine many times, but doing so incurs some call
overhead. Furthermore, it is difficult to know how frequently
the test routine should be called in order to hide the progress of
the NBC I/O operation with computation while minimizing the
call overhead. If the test routine is called after one state in the
state machine of Figure 4 is completed, it delays the progress
of the I/O operation. On the other hand, if it is called while
one state in the state machine is ongoing, it causes the call
overhead. For this experiment, we frequently invoke the test
routine in order not to delay the I/O operation. This problem
could be mitigated if we used asynchronous progress threads.
We will investigate this issue in our future work.

D. Overlapping Multiple I/O Operations

New NBC I/O operations overcome the limitation of split
collective I/O that does not allow more than one outstanding
collective I/O operation (Section II). With the new NBC I/O
routines, we can initiate multiple collective I/O operations at
a time and wait for the completion of all posted operations, as
shown in Figure 1(b).

To see the benefit of issuing multiple collective I/O oper-
ations, we run a microbenchmark that performs 16 collective
I/O operations with different file offsets. Each collective I/O
operation accesses 1 GB of a file, and thus the benchmark
writes or reads 16 GB of the file in total. For the experiment, 64
processes with ppn=8 are used. We measure the execution time
varying the number of outstanding collective I/O operations.
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Fig. 8: Performance results of overlapping multiple I/O oper-
ations.

Figure 8 illustrates the execution times with different num-
bers of outstanding collective I/O operations. Execution times
are normalized to that of 1, the case when only one collective
I/O operation is posted at a time. The results show that
issuing multiple collective I/O operations at a time reduces the
execution time up to 59% with eight outstanding collective I/O
operations for write and 13% with 16 outstanding collective
I/O operations for read, respectively. These results indicate
that multiple collective I/O operations can be overlapped by
using NBC I/O routines, although the overlapping depends
on the progress engine of the MPI implementation. Here,
we show that our implementation is capable of overlapping
multiple collective I/O operations. If applications exploit NBC
I/O operations in this way, they can obtain another performance
benefit that cannot be achieved by using blocking collective I/O
or split collective I/O operations.

V. RELATED WORK

To our best knowledge, only one paper has been published
about the design and evaluation of NBC I/O operations.
Venkatesan et al. [11] proposed general NBC I/O operations
that became the basis of the proposal for MPI 3.1 standard
described in Section II-B. The researchers implemented NBC
I/O operations in the Open MPI I/O library (OMPIO) [13]
using the libNBC library [5]. Their implementation lever-
ages the concept of collective operations schedule used in
the libNBC library, whereas our implementation exploits the
state machine and the extended generalized request to keep
track of progress of NBC I/O operations. In addition, their
implementation requires modification of the progress engine
of the underlying libNBC, whereas our implementation does
not need to modify the progress engine of MPI implementation
if it provides the extended generalized request interface. We
plan to compare the performance and efficiency of the two
implementations.

On the other hand, collective I/O operations have been
studied by many researchers. The two-phase method, which
is widely used in collective I/O implementations, was origi-
nally proposed in [14] for accessing distributed arrays from
files. Thakur and Choudhary [10] extended the basic two-
phase algorithm for accessing sections of out-of-core arrays.
Then, Thakur et al. [3] described ROMIO’s implementation of
collective I/O based on the extended two-phase method. Our



NBC I/O implementation is based on the algorithms presented
in that latter work.

Some variants and optimizations have been proposed in
order to improve the performance of two-phase methods.
Chaarawi et al. [15] presented segmentation algorithms derived
from ROMIO’s collective I/O method, and Sehrish et al. [16]
proposed a multibuffer pipelining optimization that overlaps
the request aggregation phase and the I/O phase.

Furthermore, researchers have investigated various direc-
tions in collective I/O. Blas et al. [17] proposed view-based
collective I/O, which is a file system-independent collective
I/O optimization based on file views. Coloma et al. [18]
presented their MPI collective I/O implementation to provide
better flexibility for tuning, better research platform, and easier
maintenance than ROMIO’s implementation. For application
developers to easily utilize collective I/O, Yu et al. [19]
developed the transparent collective I/O library that can reduce
programming effort by providing POSIX-like interfaces.

Since our approach can be applied to other collective I/O
algorithms, previous research on collective I/O is complemen-
tary to our work. It is beyond the scope of this paper, however,
to compare different collective I/O algorithms or optimizations
because we do not propose a new algorithm or optimization
techniques here.

VI. CONCLUSIONS AND FUTURE WORK

This work presents an implementation of NBC I/O opera-
tions, which will be part of the upcoming MPI 3.1 standard.
Our implementation is based on the extended two-phase al-
gorithm used in collective I/O implementation in ROMIO and
utilizes the state machine and the extended generalized request
to maintain progress of NBC I/O operations. The evaluation
results indicate that our implementation performs as well as
blocking collective I/O in terms of I/O bandwidth and is
capable of overlapping I/O and other operations. We believe
that our implementation can help users try NBC I/O operations
in their applications.

We plan to work on asynchronous progress of NBC I/O
operations in order to overcome the shortcomings of the
explicit progress requirement. We also plan to apply NBC I/O
operations to real applications in order to see the benefit of
NBC I/O and further improvements required for them. Addi-
tionally, we will compare our approach with other approaches,
for example, the work in [11].
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